MATH - Algebra 1 Semester 2 Lesson: Monday, April 6th

Learning Target:
 Students will factor all types of quadratic expressions.

Bell-Ringer
 Review Multiplying Binomials Practice: Review Activity

Challenges: *Get all practice problems correct and in a row **Beat your time with perfect score

Learning Target:

Students will factor all types of quadratic expressions.

Let's Get Started on the Lesson: Watch Video \rightarrow Factoring: Putting it All Together

```
Links to Previous Lessons(if you need to Review)
Lesson 4 - Factoring GCF
Lesson 5 - Factoring Trinomials (a=1)
    Lesson 6 - Factoring Trinomials (a=1 with GCF)
Lesson 7 - Factoring Trinomials (a>1)
Lesson 8 - Factoring Trinomials (a>1 with GCF)
Lesson 9 - Factor by Grouping
Lesson 10 - Factoring Special Case
Lesson 11-Factoring Special Case
```


Practice: Go to this website: Factoring Polynomials

1. Review and factor the problem on Factoring Polynomials

Steps to Factoring:

1)Look for a GCF
(using the x)
2) Label/Know values for A, B, and C.
3) Fill out Top (A times C) and Bottom (B)
4) List multiples of AC

AC Positive - Add Multiples
AC Negative - Subtract Multiples
5)Check Signs (Side Numbers: Multiply to top; Add/Subtract to bottom)
6) Divide the side values by A (reduce if you can)
7) Rewrite as factors

Denominator is the leading coefficient in the binomial
Numerator is the constant in binomial
3. Make sure to review those steps. This will become very important when we get to solving quadratics in a few lessons. Using the x in solving will give you a huge shortcut when finding the values of the zeros/x's.

Practice continued
4. Walk through the following problem on your paper to help you review factoring.

$$
\begin{aligned}
& 3 x^{2}-8 x-16 \text { *NO GiF } \\
& A=3 \quad B=-8 \quad C=-16
\end{aligned}
$$

Practice continued
5. Walk through the following problem on your paper to help you review factoring.

Practice continued
6. Walk through the following problem on your paper to help you review factoring

$$
27 x^{2}-12 \quad * \text { Has aGCF }
$$

$$
3\left(9 x^{2}-4\right)
$$

$$
43
$$

$$
\begin{aligned}
& 3\left(9 x^{2}-4\right) \\
& a=3 x b=24 \text { Special case: Difference of Squares }
\end{aligned}
$$

$$
\begin{aligned}
& \text { pecial case: Difference of squab } \\
& -a^{2}-b^{2}=(a+b)(a-b) \\
& a^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - Square Root of } 9 x^{2} \rightarrow 3 x(a) \\
& 3(3 x+2)(3 x-2) \\
& \text { - Square Roof of } 4 \rightarrow 2(b)
\end{aligned}
$$

- Square Roof of $4 \rightarrow 2(b)$

Practice continued
7. Walk through the following problem on your paper to help you review factoring.
\qquad

$$
25 x^{2}+40 x+16 \text { *No GCF }
$$

$$
\begin{aligned}
& 25 x^{2}+40 x+16 \text { *No GLt } \\
& a=5 x \quad b=4 \quad \rightarrow \text { Special Case: } a^{2}+2 a b+b^{2}=(a+b)^{2}
\end{aligned}
$$

$$
\begin{array}{ll}
a=5 x \quad b=4 \quad & \quad \text { Square Root of } 25 x^{2} \rightarrow 5 x(a) \\
(5 x+4)(5 x+4)
\end{array}
$$

$$
4(5 x+4)^{2} \text { - Square Root of } 16 \rightarrow 4(\text { b) }
$$

8. The next slide starts the independent practice. Try them on your paper and don't be afraid to make a mistake. If you get totally stuck, then you can go to slide 9 for a hint on the problem. The key to the practice is on slide 10.

Independent Practice
 Complete the problems [Hints are on the next slide]

Factor each polynomial.

1. $x^{2}-7 x+8$
2. $2 x^{2}+4 x-6$
3. $9 x^{2}-25$
4. $x^{2}+20 x+100$
5. $6 x^{2}-11 x-2$
6. $6 x^{2}-24$

Which of the following are factors of the polynomial: $3 x^{2}-13 x+12$?

```
A. (3x+4)
B. (x-3)
C. }(3x+12
D. (x+12)
E. (3x-1)
F. (3x-4)
G. (x-4)
```


Independent Practice Hints
 Here are some hints to maybe get you started.

Factor each polynomial.

1. $x^{2}-7 x+8$

Multiples of 8 that subtract to -7 .
4. $x^{2}+20 x+100$

Special Case - 100 is a perfect square.
$a^{2}+2 a b+b^{2}=(a+b)^{2}$
2. $2 x^{2}+4 x-6$

Has a GCF of 2. Divide all coefficients by 2.
5. $6 x^{2}-11 x-2$

Multiples of 12 that subtract to -11.
Using X - need to divide side numbers by 6.
3. $9 x^{2}-25$

Special Case - Difference of Squares

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

6. $6 x^{2}-24$

> Has a GCF of 6
> AND

Special Case - Difference of Squares $a^{2}-b^{2}=(a+b)(a-b)$

Which of the following are factors of the polynomial: $3 x^{2}-13 x+12$?

```
A. (3x+4)
B. (x-3)
    Multiples of 36 that subtract to -13.
C. }(3x+12
D. (x+12)
E. (3x-1)
F. (3x-4)
G. (x-4)
```


Answer Key

Once you have completed the problems, check your answers here.

Factor each polynomial.

$$
\text { 1. } x^{2}-7 x+8
$$

$$
(x-8)(x+1)
$$

$$
(x+1)(x-8)
$$

$$
\text { 4. } x^{2}+20 x+100
$$

$$
(x+10)(x+10)
$$

$$
(x+10)^{2}
$$

2. $2 x^{2}+4 x-6$

$$
2(x+3)(x-1)
$$

$$
2(x-1)(x+3)
$$

5. $6 x^{2}-11 x-2$
$\underset{\text { or }}{(x+10)(x+10)}$ $(x+10)^{2}$
6. $9 x^{2}-25$

$$
(3 x+5)(3 x-5)
$$

$$
(3 x-5)(3 x+5)
$$

6. $6 x^{2}-24$

$$
\begin{gathered}
(x+10)(x+10) \\
\text { or } \\
(x+10)^{2}
\end{gathered}
$$

Which of the following are factors of the polynomial: $3 x^{2}-13 x+12$?

$$
\text { D. } \quad(x+12)
$$

$$
\text { E. } \quad(3 x-1)
$$

$$
\begin{array}{ll}
\text { F. } & (3 x-4) \\
\hline \text { G. } & (x-4)
\end{array}
$$

$$
\begin{aligned}
& (x-3)(3 x-4) \\
& \text { or } \\
& (3 x-4)(x-3)
\end{aligned}
$$

Additional Practice:

Click on the links below to get additional practice and to check your understanding!

> Practice with Factoring Polynomials
> (Play Game or Practice with Flashcards)
> More Practice with Factoring
> (Play Game or Practice with Flashcards)

